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3. Timeline: 
 
Data are available. We anticipate a rapid timeline for this project and aim to have a first draft of 
the manuscript to co-authors in <6 months.  
 
4. Rationale:  
 
Type 2 diabetes is defined by elevated blood glucose levels, or hyperglycemia. There are 
multiple ways to evaluate glucose levels: fasting glucose and hemoglobin A1c (HbA1c) are 
traditional glycemia biomarkers that are commonly used clinically1, and fructosamine, glycated 
albumin and 1,5-AG are more recently proposed nontraditional glycemia biomarkers. 2,3 While 
each of these biomarkers aim to capture blood glucose levels, they vary in their molecular 
structure, timespan and limitations. Fasting glucose is a direct measure of serum glucose after an 
8 hour fast, representing instantaneous blood glucose levels, but has high intra-individual 
variability and is affected by factors such as acute illness, recent physical activity and time of 
day.4 HbA1c is formed as glucose binds to hemoglobin molecules within erythrocytes, and 
represents average blood glucose over the erythrocyte lifespan, 2-3 months.2 Factors that impact 
erythrocyte turnover, such as hemolytic anemia or severe kidney disease, as well as rare 
hemoglobin variants, alter HbA1c levels in a manner not related to blood glucose levels.5,6 
Fructosamine is glucose bound to total serum protein; glycated albumin is glucose bound to 
serum albumin, and is similar to fructosamine, as the majority of serum protein is comprised of 
albumin.  Both represent average blood glucose over the previous 2-3 weeks.  Fructosamine and 
glycated albumin levels can be affected by changes in serum protein and serum albumin 
metabolism, respectively.7 1,5-AG is a molecule structurally similar to glucose that competes 
with glucose for reabsorption in the kidney at high concentrations of glucose and competes with 
glucose for enternal uptake among persons without diagnosed diabetes (Loomis et al, manuscript 
in preparation).  It represents glycemic excursions over the previous 1-2 weeks.8  
 
These glycemic biomarkers are under both environmental and genetic control. Previous studies 
have estimated the heritability (a measure of the proportion of total variance in a phenotype 
explained by genetics) of fasting glucose to range from 30-70%, and HbA1c to range from 20-
75%, although most studies that evaluated both traits found lower heritability for fasting glucose 
than for HbA1c. 9–17 This provides strong evidence that fasting glucose and HbA1c are under 
moderate to substantial genetic influence. Recent studies have identified genetic variants 
associated with fructosamine, glycated albumin and 1,5-AG11,18, indicating some genetic impact 
on these biomarkers, and several studies have estimated heritability of 1,5-AG as part of a large 
metabolome panel,11,18 but no study has quantified the genetic control of the clinical assays of 
fructosamine, glycated albumin and 1,5-AG through heritability estimation. Consequently, no 
studies have had the ability to compare heritability across the traditional and nontraditional 
glycemic biomarkers. Heritability is population specific, affected by the relative genetic and 
environmental impact on the variance of an outcome, as well as by the method used to calculate 
it. Thus, calculating heritability for different traits in the same population will allow for a direct 
evaluation of their relative genetic impact. This will put previous genetic variant associations 
with these biomarkers into context, determining how much variability they explain and hence 
how much is left to uncover.  
 



Heritability is traditionally measured in related individuals, but recently developed methods have 
allowed for heritability estimation among unrelated individuals19,20. This permits large cohort 
studies such as ARIC to contribute to quantification of trait genetic control. In this analysis, we 
will calculate SNP heritability for fasting glucose, HbA1c, fructosamine, glycated albumin and 
1,5-AG in ARIC participants and compare heritabilites across the different glycemic biomarkers. 
 
5. Main Hypothesis/Study Questions: 
 
In this study, we will quantify the amount of SNP heritability for fructosamine, glycated albumin 
and 1,5-AG using participants from the ARIC study. We will also estimate heritability for fasting 
glucose and HbA1c and compare heritabilites across all biomarkers of hyperglycemia. 
 
Hypothesis: Fructosamine, glycated albumin and 1,5-AG are under genetic control, the portion 
of which due to common genetic variants can be quantified using SNP heritability. 
 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
 
Study population: GWAS data is available for approximately 10,000 (8,000 white, 2,000 black) 
ARIC participants. 
 
Study design: Analysis using glycemic biomarker (fructosamine, glycated albumin and 1,5-AG) 
data collected at ARIC visit 2 (1990-1992).  Blood for genetic data was collected at visit 1 
(1987-1989), but as the DNA sequence does not change over time, it is acceptable to collect 
exposure (DNA) and outcome (markers of glycemia) variables at different study visits. 
 
Inclusion/exclusion ARIC individuals with consent for genetics studies, and with GWAS data 
that has passed standard (ARIC approved) quality thresholds will be included. We will exclude 
individuals without valid fructosamine, glycated albumin and 1,5-AG data available and 
individuals with prevalent diabetes at visit 2, (defined by self-reported physician diagnosed 
diabetes or taking diabetes medication) when fructosamine, glycated albumin and 1,5-AG were 
measured. We will also exclude one from each pair of related individuals. 
 
Exposure variables: Imputed genotypes from GWAS data 
 
GWAS data 
DNA was extracted from blood collected at visit 1 from ARIC participants.  Genotyping was 
doine using the Affymetrix 6.0 array and imputed to 1000 Genomes Phase I reference panel for 
37 million SNPs.  Standard quality control measures were applied. 
 
Outcomes: Fructosamine, glycated albumin, 1,5-AG 
 
Fructosamine (Roche Diagnostics, Indianapolis IN, USA), glycated albumin (Asashi Kasei GA-
L, Tokyo, Japan) and 1,5-AG (GlycoMark assay implemented on the Roche ModP, Wiston-



Salem, NC) were measured in 2012-2013 using a Roche Modular P800 system from serum 
collected at visit 2 (1990-92) and stored at -70oC.21  
 
Covariates: Age (years) at visit 2, sex, study center and significant (p<0.05) principal 
components. 
 
Data analysis:  
 
SNP heritability 
 
We will utilize genomic-relatedness-based restriction maximum likelihood (GREML) to 
calculate SNP heritability for fructosamine, glycated albumin, fasting glucose and HbA1c.19,20 
This method uses unrelated individuals, excluding related individuals to remove the potential for 
residual similarities in environmental exposures, and calculates a relatedness matrix (GRM) 
based on genotype similarities across all genotyped SNPs and all pairs of individuals in the 
study. It then regresses the outcome on this weighted matrix as a random effect in a mixed linear 
model (fixed effects include covariates and principal components), and the variance due to 
genotyped SNPs is calculated using restriction maximum likelihood estimation. This variance is 
the variance in the phenotype due to additive genetic effects of SNPs in the dataset, so dividing it 
by the overall variance results in a heritability estimate.  
 
This method was originally developed by Yang and Visscher in 2010 using the GCTA software 
package and widely implemented for various phenotypes.20,22,23 One limitation with the original 
method is that linkage disequilibrium (LD) structure my affect calculations of genetic relatedness 
and must also be taken into account. SNPs in the same LD block are likely tagging the same 
causal variant but in the original Yang-Visscher method, the SNPs are given equal weight, hence 
upweighting the influence of that particular causal SNP. Speed et al attempted to remedy this 
with weighting by LD structure (eg, if 5 SNPs are in strong LD with eachother, each SNP will 
contribute 1/5, totaling a contribution of 1 SNP) in a software package called LDAK.24 
Subsequent versions of the Yang-Visscher method, GCTA-LDMS stratify by allele frequency 
and LD structure in an attempt to remove the influence of LD structure.25 There is debate in the 
literature as to which method is best, thus we will use both LDAK and GCTA-LDMS to estimate 
heritability.   
 
We will compare heritabilities across different measures of hyperglycemia, fasting glucose, 
HbA1c, fructosamine, glycated albumin, and 1,5-AG and we will determine how much of 
heritability is explained by the significant SNPs.  We will use genome-wide data to calculate 
SNP heritability separately in blacks and whites to minimize confounding by ancestry, and will 
control for principal components to further reduce confounding by ancestry. 
 
 
Limitations:  
 
SNP heritability is calculated using only the genetic variants for which we have high quality 
data, thus it reflects the percent of phenotypic variation due to the causal SNPs tagged by the 
SNPs in our data. Genome-wide SNP data and subsequent imputation aim to capture a large 



portion of the genome, but do not well cover rare variants and thus do not account for all genetic 
variation across the entire genome. Thus, SNP heritability may underestimate true heritability.  
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